
Abstractionless Programming in App Inventor
Audrey Seo

Computer Science Department
Wellesley College

Wellesley, Massachusetts, U.S.
aseo@wellesley.edu

Abstract
App Inventor is a web-based blocks programming environ-
ment that allows people of all ages and experiences to build
mobile apps, introducing new programmers to fundamen-
tal programming concepts such as variables, conditionals,
iteration, and procedures. Past studies show that program-
mers do not use procedures, App Inventor’s key means of
abstraction for avoiding duplicate code, very often, which
suggests that App inventor programmers, instead of using
procedures, merely duplicate their code. This research fo-
cused on detecting duplicated event handlers in two datasets
of App Inventor code. I found that about 13% of App Inventor
event handlers are duplicates. Surprisingly, over 49% of this
code cannot be extracted into a procedure without using
the rarely used blocks for manipulating generic components,
which could be further preventing App Inventor program-
mers from using procedures as abstractions. Therefore, more
work needs to be done to make programmers more aware of
generics and how to use them.

Keywords App Inventor, procedure extraction, computa-
tional thinking, blocks programming, abstraction

1 Introduction
App Inventor is a web-based blocks programming language
that allows userswith little to no coding experience to quickly
create and deploy mobile applications. In the in-browser App
Inventor IDE, programmers drag and drop user interface and
functional components onto a simulated phone screen, and
then combine programming blocks to specify the behavior
of the app. As of July 2018, App Inventor has over 7 million
users who have created 30+ million apps.

Two data sets of App Inventor projects were obtained for
this research. The first data set, referred to as the 10K data
set, consists of all of the projects created by 10,003 randomly
selected App Inventor programmers. In total, it contains
30,983 projects. The second data set, dubbed the 46K data
set, was chosen based on studying so-called “prolific” App
Inventor programmers: those with 20 or more programs each.

BLOCKS+, November 04, 2018, Boston, MA, USA
2018. ACM ISBN . . . $15.00
https://doi.org/

The 46K dataset contains 1,546,056 projects that were created
by 46,320 programmers1.

An App Inventor project, once downloaded, actually con-
sists of several parts: JSON and XML files for each of the
screens involved in the app. In order to streamline analysis,
these two parts were combined and parsed back into JSON.
However, several of the projects in each of the datasets failed
to parse correctly, so the actual number of projects studied
in this research was

• 30,851 of the 10K projects, and
• 1,545,284 of the 46K projects.

Last summer, it was discovered that procedures, a crucial
abstraction mechanism in App Inventor, only 15% of random
projects and and 18% of the 46K projects used procedures.
[2].

2 Detecting Opportunities for Procedure
Extraction

My main goal was to determine if App Inventor program-
mers are missing opportunities for procedure extraction, i.e.
capturing nearly identical code patterns with procedures, as
in Fig. 1. I wrote a program that looked for nearly duplicate
event handler bodies, each of which could be replaced by
a call to a single new procedure with the appropriate argu-
ments within a single screen of an app, that had at least five
blocks to be consistent with other work [1]. I found that
duplication is prevalent in both data sets, where 18.7% of the
10K programmers and 87.6% of the 46K programmers had at
least one missed opportunity for procedure extraction. Some
other results are shown in Fig. 2 and 3.

An unexpected result was that 55% of the 10K and 49% of
the 46K duplicated code could not be extracted into a proce-
dure without using so-called generic components and blocks.
These are needed in situations where a procedure must ab-
stract over a particular component (such as a label or button)
rather than a simple value like a number or string. See Fig.
1. As Table 1 indicates, generic blocks are very rare, possibly
because programmers do not know about them or find them
hard to use. Furthermore, very few resources that demon-
strate how generics are used exist, and in the App Inventor
IDE, generic component and generic method, getter, and set-
ter blocks are kept in entirely different menus, which does

1129 of these programmers overlap with the 10K programmers.
1

https://doi.org/

BLOCKS+, November 04, 2018, Boston, MA, USA Audrey Seo

Figure 1. Left: two button click handlers with code that was
identified as duplicates. Right: the resulting procedure that
was abstracted, in addition to the two calls to the procedure
that replace the duplicated code on the left.

Figure 2. The distributions of the numbers of blocks in each
case where a procedure could be extracted.

Figure 3. The distributions of the number of opportunities
to create procedures per user in both datasets.

not suggest to a beginner programmer that they are meant
to be used together and exacerbating this disconnection.

Block Type Frequency
10K 46K

Generic methods, getters, and setters 0.014% 0.21%
Nongeneric methods, getters, and setters 40.3% 44.6%

Table 1. Block frequencies for the generic and nongeneric
component method, getter, and setter blocks for all projects
in each dataset.

3 Related Work
This work and [2] are in the area of blocks programming
research on procedure extraction. Missed extraction oppor-
tunities are an example of a code smell, i.e., a pattern of bad

programming style, in App Inventor. Other work has stud-
ied this and other smells in other blocks languages such as
Scratch, a blocks programming language targeted specifi-
cally at children. In [3] it was found that Scratch projects
were less likely to be “remixed” if they had the code smells
Long Script, Duplicate Code, or Unused Variable. [1] found
that Scratch programmers tend to have duplicated code, just
as we found in this study, in addition to also examining the
code smells dead code, large script, and large sprite.

4 Presentation Proposal and Next Steps
At my poster presentation, I would like to present evidence
for the aforementioned problems in addition to proposing a
possible solution involving procedure extraction and changes
to the App Inventor interface regarding generic blocks. This
would be guided by the following questions.

1. Is App Inventor code easier to copy and paste than a
text-based language like Python or Java’s code, simply
because it is a blocks programming language?

2. How can the App Inventor language or environment
be changed to encourage programmers to use more
procedures? Examples of improvements include high-
lighting procedure extraction opportunities to pro-
grammers, or even automatically performing the ex-
tractions

3. How aware are App Inventor programmers of the
other abstraction mechanisms in App Inventor: vari-
ables, lists, loops, generics, and files? How effectively
does App Inventor allow them to use these abstrac-
tions?

Acknowledgments
This research was funded by the 2018 Wellesley College
Science Center Summer Research program through the IBM
Faculty Research Fund for Science and Math. I would also
like to thank my advisor, Lyn Turbak, for mentoring me
throughout this past summer on this project, and the rest of
the App Inventor and Blockly development teams for their
valuable guidance and insight.

References
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and

How We Know: An Exploratory Study on the Scratch Repository. In
Proceedings of the 2016 ACM Conference on International Computing
Education Research (ICER ’16). ACM, New York, NY, USA, 53–61. https:
//doi.org/10.1145/2960310.2960325

[2] I. Li, F. Turbak, and E. Mustafaraj. 2017. Calls of the wild: Exploring
procedural abstraction in app inventor. In 2017 IEEE Blocks and Beyond
Workshop (B B). 79–86. https://doi.org/10.1109/BLOCKS.2017.8120417

[3] P. Techapalokul and E. Tilevich. 2017. Understanding recurring quality
problems and their impact on code sharing in block-based software. In
2017 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). 43–51. https://doi.org/10.1109/VLHCC.2017.8103449

2

https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1109/BLOCKS.2017.8120417
https://doi.org/10.1109/VLHCC.2017.8103449

	Abstract
	1 Introduction
	2 Detecting Opportunities for Procedure Extraction
	3 Related Work
	4 Presentation Proposal and Next Steps
	Acknowledgments
	References

